Image Restoration Using Chaotic Simulated Annealing

نویسندگان

  • Leipo Yan
  • Lipo Wang
چکیده

Both the stochastic chaotic simulated annealing and the deterministic chaotic simulated annealing are used to restore gray level images degraded by a known shift-invariant blur function and additive noise. The neural networks are modeled to represent the image whose gray level function is the simple sum of the neuron state variables. The restoration consists of two stages: parameter estimation and image reconstruction. During the first stage, parameters are estimated by comparing the energy function of the neural network to a constraint error function. The neural networks are then updated. Experiments show that noisy chaotic neural network could get good results in relatively shorter time compared to Hopfield neural network and better results compared to transiently chaotic neural network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Hybrid Tabu Search Algorithm for Image Restoration

─ In this article a novel parallel hybrid algorithm is proposed for image restoration. The Image restoration problem is formulated as a Maximum a Posteriori (MAP) estimation problem. The noise free image is modeled as Markov Random Field Model. The MAP estimates are obtained by the proposed hybrid Tabu algorithms. The performance of the algorithm is enhanced by parallelizing the proposed hybrid...

متن کامل

Bayesian multichannel image restoration using compound Gauss-Markov random fields

In this paper, we develop a multichannel image restoration algorithm using compound Gauss-Markov random fields (CGMRF) models. The line process in the CGMRF allows the channels to share important information regarding the objects present in the scene. In order to estimate the underlying multichannel image, two new iterative algorithms are presented and their convergence is established. They can...

متن کامل

Multichannel image restoration using compound Gauss-Markov random fields

In this paper, a solution to the multichannel image restoration problem is provided using compound Gauss Markov random elds. For the single channel deblurring problem the convergence of the Simulated Annealing (SA) and Iterative Conditional Mode (ICM) algorithms has not been established. We propose two new iterative multichannel restoration algorithms which can be considered as extensions of th...

متن کامل

A General Multichannel Image Restoration Method Using Compound Models

In this paper we present a multichannel image restoration method using Compound Gauss Markov Random Field (CGMRF) models. Information regarding the objects present in the scene is shared via the line process in the CGMRF. Two new iterative algorithms to estimate the underlying multichannel image are presented, which can be considered as extensions of the classical simulated annealing and ICM me...

متن کامل

Adaptive annealing for chaotic optimization

The chaotic simulated annealing algorithm for combinatorial optimization problems is examined in the light of the global bifurcation structure of the chaotic neural networks. We show that the result of the chaotic simulated annealing algorithm is primarily dependent upon the global bifurcation structure of the chaotic neural networks and unlike the stochastic simulated annealing infinitely slow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003